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Abstract. The Lund area law describes the probability for the production of a set of colourless hadrons
from an initial set of partons, in the Lund string fragmentation model. It was derived from classical
probability concepts but has later been interpreted as the result of gauge invariance in terms of the Wilson
gauge loop integrals. In this paper we will present a general method to implement the area law for a multi-
gluon string state. In this case the world surface of the massless relativistic string is a geometrically bent
(1+1)-dimensional surface embedded in the (1+3)-dimensional Minkowski space. The partonic states are
in general given by a perturbative QCD cascade and are consequently defined only down to a cutoff in the
energy-momentum fluctuations. We will show that our method defines the states down to the hadronic
mass scale inside an analytically calculable scenario. We will then show that there is a differential version of
our process which is closely related to the generalized rapidity range λ, which has been used as a measure
on the partonic states. We identify λ as the area spanned between the directrix curve (the curve given
by the parton energy-momentum vectors laid out in colour order, which determines the string surface)
and the average curve (to be called the P-curve) of the stochastic X-curves (curves obtained when the
hadronic energy-momentum vectors are laid out in rank order). Finally we show that from the X-curve
corresponding to a particular stochastic fragmentation situation it is possible to reproduce the directrix
curve (up to one starting vector and a set of sign choices, one for each hadron). This relationship provides
an analytical formulation of the notion of parton–hadron duality. The whole effort is made in order to get
a new handle to treat the transition region between where we expect perturbative QCD to work and where
the hadronic features become noticeable.

1 Introduction

The Lund string fragmentation model was developed
many years ago [1,3] and as implemented in the well-
known Monte Carlo simulation program JETSET [4] it
has been very successful in reproducing experimental data
from high energy multi-particle processes.

The model is based on a few general assumptions:
(i) the final state particles stem from the break-up of a
string-like force field spanned between the coloured con-
stituents,
(ii) there is causality and Lorentz invariance, and
(iii) the production of the particles can be described in
terms of a stochastic process which obeys a saturation as-
sumption. We have, in a recent paper [5], re-derived the
major result for the (1 + 1)-dimensional model, which is
applicable for events with a quark (q, a colour-3) and an
antiquark (q̄, a colour-3̄) at the endpoints of the string
but with no interior gluonic (g, colour-8) excitations. The
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result is that the (non-normalized) probability for the pro-
duction of an n-particle final state of hadrons with energy-
momenta {pj} and masses {mj} is given by the Lund area
law:

dPn({pj};Ptot), =
n∏

j=1

Njd
2pjδ(p2

j − m2
j )

×δ


 n∑

j=1

pj − Ptot


 exp(−bA), (1)

where A is the area spanned by the string “before” the
break-up, cf. Fig. 1, Ptot is the total energy-momentum of
the state and {Nj} and b are parameters related to the
density of hadronic states and the break-up properties of
the string field, respectively.

The result in (1) is evidently similar to a quantum me-
chanical transition probability. It is the final state phase
space multiplied by a squared matrix element, which in
this case would correspond to the negative area exponen-
tial. In [5] we have shown that it is possible to “diagonal-
ize” the model, i.e. to express the result in (1) as a product
of (diagonal) transition operators (in quantum mechani-
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Fig. 1. A high-energy string break-up

cal language it would correspond to density operators). It
turns out that in this way the dynamics can be described
in terms of (1 + 1)-dimensional (space-like) harmonic os-
cillators.

Shortly after the original derivation of the area law
[1] Sjöstrand [6] provided an implementation of the model
applicable also for multi-gluon states, i.e. when the string
surface is no longer flat but geometrically bent due to the
internal excitations. Sjöstrand’s method is to project the
positions of the break-up points (the vertices) from the
(flat) (1 + 1)-dimensional model as given by (1) onto the
surface of the bent string. The projection is done so that
the proper times of the vertices and the squared masses
of the particles produced between them are the same. Un-
fortunately this method does not fulfil the area law on
the bent surface because it is a geometrical fact that the
areas “below the vertices” are not invariant under such a
projection from a flat to a bent surface.

Although the area law is not fulfilled on an event to
event basis by the method in [6] we will show that it is
fulfilled in an average sense, i.e. the predicted inclusive
distributions are little affected by the differences. It is
well known that the experimental results for these dis-
tributions are well described by JETSET even up to the
largest available energies of today.

The intention of this note is to implement another
method for particle production in multi-gluon states which
fulfils the area law at every single step in the production
process. We will find that it is necessary to tackle a set of
problems in the definition of the states which we apply the
process to. We note that the states defined by perturba-
tion theory are resolved only to the scale of some virtuality
cutoff. We will find that our method provides a set of exci-
tations on the hadronic mass scale, in the string field. We
will investigate the properties of these “soft hadronization
gluons” in future work.

The states of the massless relativistic string fulfil a
minimum principle, i.e. the surface spanned in spacetime
by the string during its motion is a minimal surface. This
means on the one hand, that the states should be stable
against small-scale variations and on the other hand that
the surface is fully determined by the boundary curve.
In this case the boundary curve corresponds to the orbit
of one of the endpoints, conventionally chosen as the q-
endpoint. Therefore, the process we are going to define is

a process along this curve, to be called the directrix curve,
which is completely defined by the perturbative cascade.
In this paper we will treat the partons as massless, al-
though both the process and the directrix curve can be
defined for a general case with massive quarks.

One property which can be derived from (1) is that
the average decay region is a typical hyperbola. On the
average, the final state hadrons in our process will be pro-
duced in the same way, albeit this time along a set of
connected hyperbolae. In [2] we have defined such an av-
erage curve and we will, in this paper, call it the X -curve.
Just as a simple hyperbola has a length proportional to
the hyperbolic angle that it spans (this corresponds to the
available rapidity range along the mean decay region, in a
two-jet system of hadrons) the X -curve has a length cor-
responding to a generalized rapidity range, usually called
the λ measure [2,3]. The X -curve is defined in terms of
differential equations and we will show the close relation-
ship between the X -curve and our process in the limit of
a vanishing hadron mass.

There are several reasons to undertake this investiga-
tion. One is to compare the precise implementation of the
area law to the approximate process in [6]. We will do this
both in this paper and in future publications.

Another reason is to get a handle on the general struc-
ture of fragmentation, in particular to be able to treat
also the multi-gluon fragmentation states by the analyti-
cal methods introduced in [5]. This is of particular interest
for the transition region, i.e. the region in between where
we expect perturbation theory to work and where we know
that the non-perturbative fragmentation sets in.

A final reason is to investigate the stability of the states
in QCD under fragmentation, i.e. given a multi-gluon state
defined according to the rules of perturbation theory (with
cutoffs as mentioned above) to find out to what extent it
can be modified so that the observable results after frag-
mentation are still in agreement with the experiments. In
the Lund interpretation of fragmentation where the par-
ticles stem from the energy of the force field, it is tacitly
assumed that modifications of the perturbative state be-
low and up to the scale of the hadronic masses should
have no effects. We will find that it is necessary to take
into account the coherence properties of the radiation in
any modification.

Although the methods presented in this paper are ap-
plicable to any multi-gluon state, for definiteness we will
concentrate on the states obtained in e+e−-annihilation
processes where we expect an original colour singlet (qq̄)-
state to form and start to go apart, producing a set of
bremsstrahlung gluons inside an essentially point-like re-
gion. We will also be satisfied to treat a single kind of
hadron with mass m. Finally, in this paper we will not in-
troduce gaussian transverse momentum fluctuations
(which we expect in a tunneling scenario [3]) in the frag-
mentation process. We will investigate the influence of
such fluctuations in a future publication.

In Sect. 2, we provide a set of necessary formulae from
the (1 + 1)-dimensional Lund model. In Sect. 3, we con-
sider the motion of strings containing internal excitations.
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We also provide a description of the coherence proper-
ties of QCD and some necessary formulae to understand
the X -curve. In Sect. 4, we define the properties of the
string break-up in general. We find that the most gen-
eral implementation of the area law leads to a highly in-
tractable process and therefore in Sect. 5 we define another
approach which mends all the problems with the earlier
one. In particular, in Sect. 5.3 we show a close relation-
ship between a differential version of this process and the
X -curve. In Sect. 6, we present a set of results from our
method, followed by some concluding remarks on future
work in Sect. 7.

2 Some results
from the (1 + 1)-dimensional model

2.1 The area law

The Lund model contains a non-trivial interpretation of
the QCD force field in terms of the massless relativistic
string with the quarks (q) and the antiquarks (q̄) at the
endpoints and the gluons (g) as internal excitations on the
string field. It is assumed that the force field can break
up into smaller parts in the fragmentation process by the
production of new (qq̄)-states (i.e. new endpoints). A q
from one such break-up point (“vertex”), together with a
q̄ from an adjacent vertex and the field between them, can
form a hadron on mass shell.

For the simple case when there are no gluons, the string
field only corresponds to a constant force field (with a
phenomenological size κ � 1GeV/fm) spanned between
the original qq̄-pair. In a semi-classical picture, conserva-
tion of energy-momentum allows the creation of a new
massless pair at some point along the field. The pair will
then go apart along opposite light-cones, using up the
energy in the field in between (in this way the confined
fields will always end on the charges). In order that the
hadron produced between two adjacent vertices should
have a positive squared mass, it is necessary that the ver-
tices are placed in a space-like manner with respect to
each other. Consequently, time-ordering will be a frame-
dependent statement (in any Lorentz frame the slowest
particles will be the first to be produced, thereby fulfill-
ing the requirements in a Landau–Pomeranchuk formation
time scenario). It is possible to order the production pro-
cess instead, along the light-cones and introduce the no-
tion of rank so that the first rank hadron along the original
q-light-cone will contain that q together with a q̄ from the
first vertex along the light-cone, the second rank hadron
a q from the first vertex and a q̄ from the next etc.; cf.
Fig. 1. Rank-ordering is a frame-independent procedure.
It is of course possible to introduce a rank-ordering also
from the end containing the original q̄.

One obtains [1,3,5] the unique process described by
(1) from these observations and an assumption that the
break-up process obeys a saturation assumption, i.e. that
after many steps when we are far from the endpoints the
proper times of the vertices will be distributed according
to an energy-independent distribution.

x+x´−

x−

p−p+

x´+ x´
x

Fig. 2. Two adjacent vertices of the string break-up process
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Fig. 3. A ladder diagram describing multi-particle production

A particular feature is that if a particle with energy-
momentum p = (p+, p−) and with squared mass m2 =
p2 = p+p− is produced between the two vertices with
x = (x+, x−) and x′ = (x′

+, x′
−) then we have (cf. Fig. 2)

p+ = κ(x+ − x′
+) ≡ q+ − q′

+,

p− = κ(x′
− − x−) ≡ q− − q′

−. (2)

Thus we find that on a flat string surface the difference
between the vertex points will fulfil:

(x − x′)2 = −m2/κ2. (3)

(2) implies that the (1 + 1)-dimensional Lund fragmenta-
tion model may also be described by means of a multi-
peripheral chain diagram as in Fig. 3 or in an energy-
momentum space picture as in Fig. 4.

This is used in [5] in order to subdivide the area law
process into steps in between the vertices. The energy-
momentum conserving δ-distribution in (1) can be
“solved” by introducing the momentum transfers {qj} in-
stead of the hadron momenta {pj}. Then the mass-shell
condition means that the hyperbolic angle between the
vertices and the size of the area slit, exhibited in Fig. 2
are fixed by the squared sizes q2 = −Γ , (q′)2 = −Γ ′ and
(q − q′)2 = m2. The result is that (1) can be rewritten as
a product of steps between the {Γj}:

dPn({pj}, Ptot) =
∏

K(Γj , Γj−1,m
2)dΓj ,

K(Γ, Γ ′,m2) = N

exp
(

− b

2

√
λ(Γ, Γ ′,−m2)

)
√

λ(Γ, Γ ′,−m2)
,

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. (4)
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Fig. 4. The energy-momentum space picture (qj) and the
spacetime picture (xj) respectively

It is a remarkable fact that the transfer operators K can
be diagonalized in terms of the eigenfunctions of the har-
monic oscillator (those which are boost invariant in a
(1 + 1)-dimensional space-like Minkowski space; in a two
dimensional euclidean space they correspond to a vanish-
ing angular momentum) gn(Γ ) with the eigenvalues solely
determined by the squared mass of the hadrons produced
in between:

K(Γ, Γ ′,m2) =
∞∑

n=0

gn(Γ )λn(m2)gn(Γ ′). (5)

The eigenvalues λn are analytic continuations of the har-
monic oscillator eigenfunctions to time-like values of the
argument, [5]. Useful representations of K and the eigen-
values λn are

K(Γ, Γ ′,m2) =
∫ 1

0

dz
z

exp
(

− b

2

(
zΓ +

m2

z

))

×δ

(
Γ ′ − (1 − z)

(
Γ +

m2

z

))
,

λn(m2) = N exp
(
bm2

2

)∫ 1

0

dz
z
(1 − z)n

× exp
(

−bm2

z

)
. (6)

We have introduced the positive light-cone fraction of the
produced hadron z defined by (x+ − x′

+) = zx+. It is
straightforward algebra to prove that the shaded area,
exhibited in Fig. 2 is given by the exponent (1/2)(zΓ +
(m2/z)) in the representation of the kernel K. We also
note that the area obtained by summing the areas of the
regions marked I, II and III in Fig. 5 is equal to twice
this area and that m2/z equals the sum of the areas of
regions I and II. There is a simple relationship between
the two adjacent values of Γ in the representation of K:

Γ ′ = (1 − z)
(
Γ +

m2

z

)
. (7)

Finally we note the identity (in easily understood nota-
tion)

(I)(III) = (II)(IV ). (8)

I

II

III

IV

qq

x´
x

Fig. 5. The figure shows the two vertices and the regions I, II,
III and IV described in the text

Equation (8), just as (3), is only valid for a flat string
surface and a particular consequence is that the region IV
is non-vanishing for the (1+1)-dimensional model. As the
area of the region IV is proportional to (1−z), the variable
z must always be smaller than unity, i.e. there is a built in
requirement that a typical step of the process can never
use up all the available light-cone energy-momentum.

Such a requirement also comes out of the following
argument. Suppose that we would integrate dPn in (1)
over all possible energy-momenta and then sum over all
multiplicities. Due to Lorentz invariance, we will obtain
a function R(s) which can only depend upon the total
squared energy-momentum s = P 2

tot. If we pick out the
dependence on the first particle and sum and integrate
over all the rest we obtain an integral equation for the
function R:

R(s) = (B.T.) +
∫ 1

0
N

dz
z

exp
(

−b
m2

z

)
R(s′),

s′ = (1 − z)
(
s − m2

z

)
, (9)

where (B.T.) stands for “boundary condition term” and
the variable s′ is equal to the squared mass of all the
remaining particles if the first hadron takes the light-cone
fraction z (we note the similarity to (7)). The integral
equation (9) has an asymptotic solution R ∝ sa (with the
parameter a being a function of N and bm2, cf. [5]) with
the requirement

∫ 1

0
N

dz
z
(1 − z)a exp

(
−b

m2

z

)
= 1. (10)

Consequently while the exclusive formula for the produc-
tion of a particular hadron with the light-cone fraction z is
given by the area law, the inclusive probability to produce
this hadron (irrespective of what comes after it in the pro-
cess) must be weighted with R(s′)/R(s) � (1−z)a. There-
fore, the well-known Lund fragmentation formula is given
by the integrand in (10) and there is a power suppression
for large values of the fragmentation variable.

The formulae presented above correspond to an or-
dering along the positive light-cone, i.e. the variable z is
defined as the positive light-cone momentum fraction of
the particle. It is possible to redefine everything in terms
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of an ordering along the negative light-cone, i.e. to intro-
duce the corresponding negative light-cone component ζ
by writing (x′

− −x−) = ζx′
−. It is straightforward to prove

that

ζ =
m2

m2 + zΓ
and z =

m2

m2 + ζΓ ′ , (11)

and from this we find that the integrand in the represen-
tation of the kernel K can be reformulated from (z, Γ ) →
(ζ, Γ ′) to exhibit the symmetry between the descriptions
along the positive and the negative light-cone directions

dz
z

δ

(
Γ ′ − (1 − z)

(
Γ +

m2

z

))

× exp
(

− b

2

(
zΓ +

m2

z

))
,

→ dζ
ζ

δ

(
Γ − (1 − ζ)

(
Γ ′ +

m2

ζ

))

× exp
(

− b

2

(
ζΓ ′ +

m2

ζ

))
. (12)

3 The description
of a multi-gluon string state

The dynamics of the massless relativistic string is based
upon the principle that the surface spanned by the string
during its motion is a minimal surface. This means that
the surface is completely determined by its boundary. In
the Lund model the string is used as a model for the con-
fined colour force field in QCD and the above property
then has the further important implication that the dy-
namics will be infrared stable, i.e. all predictable features
from the decay of the force field should be stable against
minor deformations of the boundary.

For an open string a single wave moves across the
spacetime surface and bounces at the endpoints. The wave
motion is determined by a (four-)vector-valued shape func-
tion, which we will call the directrix, A. Thus a point on
the string, parametrized by the amount of energy σ, be-
tween the point and (for definiteness) the q-endpoint is,
at the time t, at the position

x(σ, t) =
1
2

(
A
(
t+

σ

κ

)
+ A

(
t − σ

κ

))
. (13)

We will from now on put the string constant κ equal to
unity in order to simplify the formulae.

While the tension T = ∂x/∂σ is directed along the
string, the velocity v = ∂x/∂t is directed transversely
so that T · v = 0. The definition of σ also implies that
T 2 +v2 = 1 (all the three-vector relations are valid in the
local rest frame). Together this means that the directrix
function has an everywhere light-like tangent

(
dA
dξ

)2

= 1 =
(
dA0

dξ

)2

. (14)

The tension must vanish at the endpoints (σ = 0 and
σ = Etot) and this implies that the directrix must be a
periodic function with the property

A(ξ + 2Etot) = A(ξ) + 2Ptot, (15)

where Ptot (Etot) is the total energy-momentum (energy)
of the state. While according to (13), the directrix A(t)
describes the motion of the q-end, from (15) it is evident
that

Aq̄(t) = A(t+ Etot) − Ptot, (16)

will describe the motion of the q̄-end. Finally, if the string
starts out from a point (at the time t = 0) then we must
have the symmetry

A(ξ) = −A(−ξ). (17)

Using the Lund interpretation of the gluons as internal
excitations on the string it is easy to construct the first
half period of the directrix curve: it starts with the quark
energy-momentum k1 and then the gluon energy-momenta
{kj} are laid out in colour order and it ends with the q̄
energy-momentum kn, for a string with (n − 2) gluons.
In this way the q-endpoint will be acted upon by the
colour-ordered excitations as they arrive in turn. From
(15) and (17) it follows that we obtain the directrix of the
second half period by reversing the order, starting with
the q̄ energy-momentum and ending with the q energy-
momentum (besides the translation this is the way the
q̄-endpoint will move according to (16)).

The energy-momentum content in the string at a cer-
tain time t, between the point σ and the q-end is given
by ∫ σ

0
dσ′ ∂x

∂t
=

1
2
(A(t+ σ) − A(t − σ)). (18)

3.1 The coherence conditions in QCD

The properties of the directrices which are described above
are common to all states of the massless relativistic string.
On the other hand the use of the string as a model for the
force fields of QCD may single out a particular class of all
possible states. We will briefly discuss the conditions which
correspond to the coherence conditions of bremsstrahlung
radiation in a gauge field theory.

Multi-gluon radiation is in general described by means
of perturbative cascade models. In order to consider the
properties of the states, we will make use of the ideas
behind the Lund dipole model. To see the emergence of
a multi-gluon state we start out with the following two
basic results from QCD bremsstrahlung, (cf. [3,7,8]).

[B1] The original (qq̄)-state emits bremsstrahlung radi-
ation according to the ordinary dipole formula, i.e.
there is an inclusive density of gluon quanta which is
flat in rapidity y and the logarithm of the squared
transverse momentum κ = ln(k2

⊥) with a density
given by the coupling, ᾱ ≡ Cαs/2π:

dn = ᾱdκdy. (19)
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Fig. 6. The emission of the first and the second gluon respec-
tively

[B2] After the first (“hardest”) gluon (g1) is emitted there
are two dipoles available, one between the (qg1) and
one between the (g1q̄) with squared masses s12 ≡
(kq + kg1)

2 and s23 ≡ (kg1 + kq̄)2. The second gluon
may be emitted independently inside the angular (ra-
pidity) range of the first or the second dipole. We
note that the two dipoles (each spanned by two light-
like parton energy-momenta) move apart in the total
cms.

After the emission of the second gluon, according to the
Lund dipole model [8], there are three independent dipoles
for further emission, and so on. The masses of the dipoles
will quickly decrease and therefore also the transverse
momentum size of the emitted gluons. The cascades are
stopped by some “virtuality” cutoff, either in the dipole
mass or in the transverse momentum. The dipole model
is implemented in the Monte Carlo simulation program
ARIADNE [9].

In terms of the directrix, the original state is described
by the light-like energy-momenta of the original (qq̄)-pair.
After the emission of the first gluon the state, in space (in
the c.m.s.), will be described by a (connected) triangle, cf.
Fig. 6, where the vectors kq ≡ k1 and the vectors kg ≡ k2
constitute one of the dipoles and the k2 and kq̄ ≡ k3
the second dipole, as discussed above. (We note that for
light-like vectors the space part length is equal to the time
component.) Emission of the second gluon will then occur
in between the two vectors describing the dipole and this
evidently means that the second gluon vector will “cut off”
one of the triangular corners, making the directrix into a
quadrangle etc. (Note that already with the emission of
two gluons, the vectors shown in Fig. 6 no longer need to
be in a plane.)

In general, there will be an emission of a set of “hard”
gluons which will determine the general shape of the di-
rectrix. The remaining emissions will then make the di-
rectrix smoother and smoother as each new emission will
correspond to a gluon vector which cuts off an earlier
corner. This means that the angle between the energy-
momentum vectors of colour-connected partons becomes
smaller (along the main directions, determined by the hard
emissions) the longer the cascade continues. This is the
way that the coherence properties of the bremsstrahlung
radiation work, and it is sometimes referred to as the
“strong angular condition”. Later on, we will find that
this angular condition will play an important role when
we consider the deviations in the partonic states which
are allowed by the fragmentation process.

12

A( ξ )

A(ξ2)

x

1

12

A(ξ4)

A(ξ3)

21

34x

Fig. 7. The system (12) is shown as a string piece which is
moving away, while the system (21) is translated to x12. The
second break-up point x34 is the middle point between A(ξ3)
and A(ξ4). In this way, the particle produced in between x12

and x34 can be taken either as the second particle in the break-
up of the original system or the first in the system (21)

4 The general break-up of a string field

We will now consider the partitioning of a general string
state at a point x(σ, t) and after that define the most
general process possible for the area law.

According to (13) the break-up will occur at the middle
point (1/2)(A(ξ1) + A(ξ2)) between two positions on the
directrix, determined by ξ1 > ξ2 with t = (1/2)(ξ1 + ξ2)
and σ = (1/2)(ξ1−ξ2), cf. Fig. 7. There will be two parts of
the string left over and we will now describe their motion
after the break-up.

The first part (to be denoted “(12)”) can be described
by the “new”directrix A12(ξ) ≡ A(ξ) for ξ2 ≤ ξ ≤ ξ1.
It will contain the energy-momentum P12 = (A(ξ1) −
A(ξ2))/2, cf. Fig. 7, so that it can be continued as in
(15) with Ptot → P12. Starting it out from the position
A12(ξ2) ≡ A(ξ2), it is the “new” orbit of the (original)
q-particle in the string (12). To obtain the corresponding
orbit for the “new” q̄-end we use (16) to obtain A12q̄ ≡
A12(t + (ξ1 − ξ2)/2) − P12. If we start at the “break-up”
time t = (1/2)(ξ1 + ξ2), it will evidently behave just as
if we had adjoined the directrix A12 to the point x(σ, t)
(note that A12(ξ1) = 2P12 + A12(ξ2)).

The second part (denoted “(21)”) can be described as
the remainder, i.e. A21 = A(ξ) with ξ1 ≤ ξ ≤ 2Etot + ξ2
(noting that the original directrix is continued according
to (15)). The directrix A21 contains the energy P21 =
Ptot−P12 and is continued accordingly. To find the orbit of
the produced q-end in the part (21) we adjoin the directrix
A21 to the point x(σ, t) starting it at ξ = ξ1. The (original)
q̄ will again move according to (16).

The most noticeable property is that for a multi-gluon
force field the directrices of the two new string parts will
not fulfil (17). This implies that the endpoints of the new
strings never meet but instead turn around each other so
that each of the two states will contain angular momen-
tum. It is only in the (1+1)-dimensional case that the two
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new string parts will have the same properties as the orig-
inal string (though they will be scaled down in size and
have different rest frames due to the momentum transfer
at the break-up). The conclusion is that the final state in a
multi-gluon string fragmentation in general depends upon
the ordering of the different break-ups.

4.1 A general process based upon the area law

We may nevertheless devise a string breaking process on
a “frozen” string surface, i.e. under the assumption that
the string surface is once and for all a given device (this
is also the way Sjöstrand treated the problem exhibited
above). Assume that the system (12) is a hadron on the
mass shell, produced as the “first” hadron along the orig-
inal q-direction (i.e. the point A(ξ2) is along the q energy-
momentum vector and A(ξ1) on the other side of the cor-
ner in the directrix between the q and the first gluon).
Then we may choose two new points ξ3 > ξ1 and ξ4 <
ξ2 to obtain the second rank hadron (34) with energy-
momentum p34 = (1/2)(A(ξ3) − A(ξ1) + A(ξ2) − A(ξ4))
with the production vertex at x34 = (1/2)(A(ξ3)+A(ξ4)).
We may evidently continue this process across the string
surface, and we note that at every step it is only neces-
sary to choose two numbers: (δξ)+ = ξ3 − ξ1 and (δξ)− =
ξ2−ξ4. They must be chosen so that the corresponding p34
is the energy-momentum of a particle on the mass shell.
It is necessary to have a second condition, however, and
we may then use the area law.

For the (1 + 1)-dimensional model the numbers (δξ)±
evidently correspond to the light-cone coordinates z and
ζ in Sect. 2. The indices ± can be given a further mean-
ing for the general directrix. According to (13) there is a
left-moving and a right-moving wave spanning the string
surface and according to (15) the fixed phase parts (from
now on we will call them “grains”) “stream” across and
bounce back (thereby turning from left- to right-movers)
at the q and q̄ ends.

We may describe the situation in a (σ, t)-plane, cf.
Fig. 8, with the right- and left-moving grains moving along
fixed “light-cone lines”. The whole string is, at the time
t = 0, gathered into a single point at the origin. The
boundary values at σ = 0 and σ = Etot are the direc-
trix A(t) and the orbit of the q̄, i.e. Aq̄(t), respectively. A
break-up point x ≡ x12 is reached by the meeting of the
left-moving grain indexed ξ1 and the “right-mover” ξ2 and
the break-up at x34 by the left-mover ξ3 and right-mover
ξ4. The energy-momentum p34, streaming into the hadron
produced between x12 and x34, is evidently (1/2)(A(ξ3)−
A(ξ1)) from the left and (1/2)(A(ξ2) − A(ξ4)) from the
right. If we use ± as indices for the left- and the right-
movers respectively we obtain a useful parametrization.

With regard to surface areas there is an obvious
(scalar) surface element defined by the surface spanned
by the (incremental) grains coming from the left and the
right.

dA ∝ dA+ · dA−. (20)

E0

t
4

ξ12ξ

ξ ξ3

σ

q q
12x

x34

Fig. 8. The break-up points and the corresponding right and
left-moving grains in the (σ,t)-plane, as described in the text

Using this we may easily calculate the area “below the ver-
tices” x12 and x34 (cf. Fig. 8) as they are defined above.
They are the correspondence to the squared proper times
Γ considered in Sect. 2 (in the Fig. 5 they would corre-
spond to the areas I + IV and III + IV ).

Γ12 = x2
12 and Γ34 = x2

34. (21)

So, for the vertices shown in Fig. 8, these areas are just
the squared proper times of the vertices. But we note that
they cannot be expressed as the products of light-cone
components or even in terms of products of sets of left-
and right-movers solely, for general multi-gluon strings.

The area below the vertices (if we neglect the squared
mass term in the area law, which can evidently be included
in the normalization constants N in (1)) can be expressed
as

A1234 = x2
12 + x2

34 − x2
14. (22)

(this is the correspondence to the area called I+III+IV
in connection with (8)). We note that the area correspond-
ing to IV , i.e. x2

14 in (22), may vanish in this case, i.e. the
left-mover indexed 1 and the right-mover indexed 4 may
meet “before” t = 0. This means that the condition in (8)
cannot be met for the general situation.

We may nevertheless include these considerations to
devise an exact version of the area law in (1). We write,
in an obvious way, the differentials d2p → (dp+ ·dp−) and
include the mass-shell condition by a δ-distribution as in
(1). The result is, however, very complex to treat and for
our purposes there are three shortcomings:

1. If we treat the process in an iterative way, at every
step, just as we mentioned above, there are two num-
bers (δξ)± to be solved for. One is fixed by the mass-
shell condition and the other can be fixed by the area
exponential; but the distribution functions are very
complex (cf. the remarks under 2 below). In princi-
ple everything can be done by Monte Carlo simulation
methods but even with very fast computers and the
best possible computer routines this model will always
be much slower than a process where there is only one
number to be solved for, at every step.

2. Due to the complexity of the formulae there is no way
we can obtain useful analytical tools to study the be-



638 B. Andersson et al.: The Lund fragmentation process for a multi-gluon string according to the area law

havior of the correspondences to the transition oper-
ators as in e.g. (5). This also implies that there is no
way that we can define the total integral and sum over
the produced hadronic states (as we could do for the
(1 + 1)-dimensional model in (9) and (10)) so as to be
able to obtain the correct weighting in every step of an
inclusive cascade.

3. Although this implementation of the area law is an
“exact” procedure, fulfilling at every step the mass-
shell condition and taking the “true” area below the
vertices into account, it nevertheless starts out from
the assumption that the partonic state is so well de-
fined that there are reasons to implement an “exact”
theoretical fragmentation procedure on it. This is in
general not the case, i.e. the partonic state defined by
perturbation theory is only well defined down to some
virtuality cutoff as we have discussed before.

We use quotation-marks on the word “exact” in or-
der to indicate that the use of a “frozen surface” is in
itself an assumption introduced to mend the problems ob-
tained from the use of classical physics and neglect of the
subsequent angular momentum production. In the third
item above, we are coming back to the statement at the
beginning of the section, that infrared stability should im-
ply that minor deformations of the boundary (in this case
changes in the partonic state as defined by the directrix A
up to the order of the hadronic mass scales) should not be
noticable in the results. In the next section we will define
a procedure which will mend all the three shortcomings
mentioned above.

5 The Lund string fragmentation
as a process along the directrix

In this section, we will consider a fragmentation process
which is defined along the directrix and does not suffer
from the three problems considered at the end of Sect. 4.1.
In order to exhibit the idea we will start with the (1+ 1)-
dimensional model and rewrite it in a useful way. After
that we will extend it to the general case. In particular, we
will allow modifications of the order of the hadronic mass
scale in the directrix in accordance with the discussion
under point 3 above.

5.1 The directrix process
for the (1 + 1)-dimensional case

In this case the directrix contains only two directions,
given by the q̄ energy-momentum vector (to be called A+
in accordance with the notation introduced in Sect. 4.1)
and the q energy-momentum (A−). A vertex point xj , ob-
tained after the production of j hadrons from the q-side,
p1, . . . , pj is then described (with respect to the origin) by

xj =
1
2
(A+j + A−j). (23)

j+1X

kj+1

B
l

Xjj+1
p

xj

j+1x Aj

A   j+1

Bj
j+1

j+1

Fig. 9. A description of the fragmentation process along the
directrix with notations according to the text

We also know that

j∑
1

p� =
1
2
(A+j − A−j). (24)

Using the symmetry of a directrix passing through a single
point (see (17)) we may find another point on the directrix
with the property

A−j ≡ A−(ξj) = −A−(−ξj) ≡ −B−j . (25)

We will from now on drop the indices ± on A+ and B− but
we note that they do describe points on the same direc-
trix in accordance with the left- and right-mover notation
in Sect. 4.1. While A− goes “backward” for increasing j-
values, B follows the q-direction.

We may now consider the hadron energy-momenta to
define a curve from the origin “along the directrix” such
that after j steps it has reached the point

j∑
1

p� ≡ Xj =
1
2
(Aj + Bj), (26)

while the difference between the point Aj on the directrix
and Xj is given by xj in (23). The production of a new
particle pj+1 then corresponds to choosing two new points
Xj+1 and Aj+1 (along the directrix) such that, cf. Figure 9

Xj+1 − Xj = pj+1 and Aj+1 − Aj ≡ kj+1. (27)

We also obtain a new “vertex” vector xj+1 by the identity
(cf. Fig. 9):

pj+1 + xj+1 = xj + kj+1. (28)

In this way the vertex vector fulfils xj+1 = Aj+1 − Xj+1
just as xj = Aj −Xj . We have then arranged it so that the
hadrons are produced along a curve, theX-curve, from the
origin and the vertex vectors are the connectors for this
curve going from the produced particle to the directrix.
Before we consider the area law in this situation we note
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the symmetry between a reversed process and the process
described above, i.e. when we go from Xj to Xj+1 produc-
ing pj+1 by the use of a part kj+1 of the directrix along
A.

To see the reverse process we note that the vector xj

can just as well be reached by taking the difference be-
tween the point Xj on the hadron curve, (26), and “the
backward point” on the directrix Bj .

xj =
1
2
(Aj − Bj) = Aj − Xj = Xj − Bj . (29)

Using this we could evidently consider the production of
the particle pj+1 as a step from Bj to Bj+1 = Bj + +j

(cf. (27)) such that we have in correspondence to (28) and
Fig. 9

pj+1 + xj = xj+1 + +j+1. (30)

In order to formalize the determination of the particle
energy-momentum p, we may then in “the k-process”
(along A) assume that we know the starting vertex vector
x, connected to a point AP . We may then choose a piece
k along A (of a size to be determined) and then define
the other light-cone direction in the plane determined by
(x, k) by

+̂ = x − k
x2

2xk
. (31)

The vector p will be described in terms of (k, +̂) as

p = z+̂+
k

2
= zx+

k

2

(
1 − zx2

xk

)
, (32)

with the requirement that the particle should be on the
mass shell:

p2 = m2 = zkx i.e. kx =
m2

z
. (33)

From (28) we obtain the new vertex vector x′ by

x′ = (1 − z)x+
k

2

(
1 +

zx2

xk

)
,

(x′)2 = (1 − z)(x2 + xk) = (1 − z)
(
x2 +

m2

z

)
. (34)

In Fig. 10 we show both the production as described in
Sect. 2 and the k-process described above. In particular
we note the two areas exhibited. It is straightforward to
prove that

A = Ar + Γ ′ − Γ. (35)

with the obvious definition of e.g. Γ = x2. The area law
in (1) will be fulfilled both by the use of the area in Fig. 1
and the area in between the directrix and the hadronic
curve (the X-curve) if we choose the variable z from the
fragmentation function in (10) and apply it as in (32)–
(34). This is so because the difference between the areas

A

A

x

x

x
x

jp j

j
j+1

j+1
r

Fig. 10. The figure shows both the production as described in
Sect. 2 and the k-process described in the text

A and Ar for the single step exhibited above will vanish
when we consider the whole process.

It is also obvious that we may define an +-process sim-
ilar to the k-process we have discussed above. We just
write z+̂ = (1/2)+ and introduce the variable ζ such that
(1/2)k = ζk̂ with ζ chosen such that m2/ζ = +x′. Actually
we obtain the same process (although “in the opposite or-
der”) under the assumption that we start at x′ and chose
+ along the B-part of the directrix with the variable ζ in
accordance with (11). In this way the “backward” variable
ζ evidently obeys the same distribution as the “forward”
variable z and the area law is fulfilled.

We have reached a situation where a particle produc-
tion step starts from a knowledge of a vector x connected
to a light-cone direction. Then we choose a light-like vec-
tor k such that (33) is fulfilled with a z-value stochasti-
cally chosen from the fragmentation function in (10). Af-
ter that we construct the particle energy-momentum and
a new vector x′ according to (32) and (34). We may start
out choosing the “first” x-vector (x0) equal to the q (light-
cone) energy-momentum and then the (1+1)-dimensional
model is defined.

5.2 The directrix process around a gluon corner

For a multi-gluon directrix however, we will reach situ-
ations when there are “corners”, i.e. where the directrix
changes direction between two colour-connected partons.
Thus besides the vertex vector x, there will be a remaining
light-cone vector (to the corner) c and a chosen number z
such that

cx <
m2

z
. (36)

We will now consider ways to pass over such a corner.
Assuming that the directrix continues on the other side
of the corner we may choose a light-cone vector k which
fulfils (33) (we note that according to (36) k cannot be
chosen along c) and another light-cone vector c′ such that

k + c′ = c+ Q̂ ≡ Q, (37)

with Q̂, a vector pointing from the corner to a new point
on the directrix, and Q describing that point from the
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k

C’C Q̂

Q

Fig. 11. A possible construction (C2) for passing a gluon cor-
ner. The figure shows the space parts of the vectors, in the rest
frame of the vertex vector x, as described in the text

point on the directrix where the vertex vector x is con-
nected.

We note that with this definition the suggested way
to pass the corner corresponds to an exchange of one
“dipole”, c + Q̂ in the process for another k + c′, i.e. to
make a detour onto a “new” directrix which is “close” to
the original one. The choice of the new dipole corresponds
to a definition of what we will mean by the allowed “minor
deviations” of the original perturbative state.

In order to investigate what can be allowed under these
conditions we will exhibit a few possible choices to fulfil
(37). We will then find that all possible choices are not
allowed if we would like to obtain reasonable results for the
final state hadron distributions. A first set of possibilities
is to choose c′ as a new light-like connector that will bring
us “closer” (than the vector c) to the original directrix in
the next production step. One may then hope that after
another step in the process the new connector becomes
even “smaller” so that we are back at the original directrix
after a few steps.

[C1] The vector k can be chosen in the plane spanned by
the vertex vector x and the directrix Q (then both c′
and k are fully determined).

[C2] A more general choice is to take the vector k in the
three-space spanned by x, Q and the remainder vec-
tor c. In this case it is necessary to provide a second
condition to determine k and c′. In the rest frame of
the vertex vector x the space parts of the vectors c
and Q̂ span a triangle with the vector Q as baseline,
cf. Fig. 11. (For the case exhibited we assume that
also Q̂ is light-like. The situation can be easily gen-
eralized to the situation when there are one or more
“corners” also on Q̂.) The remaining degree of free-
dom will then be fixed by an angular condition. One
such condition is indicated in Fig. 11. The two trian-
gles (c, Q̂,Q) and (c′,k,Q) in this construction are
chosen congruent. This is a kind of minimal choice
for the size of Q in this three-space. It is not diffi-
cult to see that in general the new connector will be
smoothly connected to the original directrix.

For the case defined by the condition C1 we obtain
that k and c′ will be directed along the two light-cone
directions in the plane spanned by (x,Q):

k =
Q

2
+

((Qx)Q − Q2x)
2
√
(Qx)2 − Q2x2

and c′ = Q − k. (38)

(In Fig. 11 they would be directed along the Q-direction
with the lengths (Q0 ± |Q|)/2, respectively.) The vector

Q contains one degree of freedom which can be fixed by
multiplying with x in (38), and using (33).

This means on the one hand that the situation corre-
sponds to using up the smallest possible segment of the
directrix in the construction according to (37). On the
other hand we will obtain a very sharp “bend” on the
new directrix segment, defined by the dipole (kc′). While
the first result is desirable from an economy point of view,
the second implies that we will break the coherence condi-
tions for the directrix (the angular ordering) as discussed
in Sect. 3.1.

The fragmentation distributions obtained with this
choice are not very encouraging. After we “pass” the gluon
corner the density of hadrons is much higher than the den-
sity before the corner. We find that even for a small glu-
onic excitation a break of coherence may result in the pro-
duction of too many hadrons over a large rapidity range.

One might hope that the situation may be mended
by a suitable angular choice. This is so for the situation
described in C2 for a large part of the events and for simple
gluonic configurations. In Fig. 18 we show a Monte Carlo
simulation of the (inclusive) final state hadron rapidities in
a state containing a single gluon placed at the center with
a transverse momentum of 15GeV. Even though for most
fragmentation events the choice C2 performs well, on the
level of a few percent it does happen that the directions
of the connecting c′ and the new vertex x′ are such that
we obtain a situation close to the one for C1. The new
directrix (possibly after a few further steps in the process)
will all the time come closer to the original one; but at the
same time we obtain a sharp bend farther and farther away
from the original gluon corner with each step. This causes
too many particles to be produced over a large rapidity
range (cf. Fig. 18).

It is possible to make further changes in the procedure
with more sophisticated angular choices, but we will in-
stead go over to another and more successful choice, which
we will call C3.
[C3] A natural choice for the vector c′ is to make it into the
k-vector for the next particle production in the process,
i.e. choose a new stochastic value z′ and put c′ = k′ with

k′x′ =
m2

z

′
, (39)

in terms of the new vertex vector x′ determined from
(z, k, x) according to (34). In this way we are evidently
getting back to the original directrix as fast as possible.

We may define the vector k still in the space spanned
by (c, x,Q):

k = αc+ βx+ γQ. (40)

We obtain a solution for the coefficients (α, β, γ) from the
requirements

k2 = 0,

kx =
m2

z
and kQ =

1
2
Q2 (41)

(these conditions also imply that k′ is light-like), and an
equation for the vector Q along the directrix using (41)
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and

m2

z′ = k′x′ = (Q − k)
(
(1 − z)x+

k

2

(
1 +

zx2

kx

))
. (42)

In the fragmentation distribution there is a factor (1−z)a
(stemming from the density of states according to the dis-
cussion around (10)). This implies that we may not use
up all the energy-momentum along one of the light-cone
directions in a single step. Small values of z correspond
to ζ � 1 according to (11), i.e. to using up almost all the
energy-momentum along the other light-cone direction in
a step. Such values are suppressed by the area exponential
in the distribution. Nevertheless it may happen that we
obtain a very small z-value (z ≤ 0.1), corresponding to
a large (but not infinitely large) area. Sometimes for the
general multi-gluon directrix however, there might be no
possibility to accomodate such a large area due to energy-
momentum conservation. Then the choice C3 cannot be
done. Instead of introducing a general projection of the
two-particle distributions for all such cases, in the Monte
Carlo simulation we have chosen to go back to the begin-
ning and start a new fragmentation event. Such situations,
when we cannot use the choice C3, are infrequent enough
to let this “restart strategy” be usable.

In order to test the influence of this feature on the
model we investigate the influence on the single particle
and two-particle distributions below in Sect. 6 and we find
them negligible. In order to show that our changes in the
directrices actually are of the hadronic mass scale we have
defined a local “bending parameter” closely related to the
k⊥ variable used in the ordering of the Lund dipole model,
cf. (50)

k2
⊥2 =

2(xk1)(k1k2)
x(k1 + k2) + k1k2

. (43)

From the results in Sect. 6 we conclude that we are at
most making local modifications on the order or below
the hadronic scale in our directrices.

5.3 A differential process and its relationship
to the generalized rapidity

There is a direct connection between a differential version
of our hadronization process and the X -curve that was
referred to in the introduction [2]. In order to investigate
this process we consider the limiting situation for a van-
ishing mass parameter. Then the distribution function will
obviously develop a pole for z → 0. We will assume that
the model is defined by the incremental step size dz with
the ratio m/dz → m0. The corresponding incremental k-
vector will be called dA and it will fulfil the mass-shell
condition (we will use the notation qP instead of x for the
vertex vector in connection with the differential process)

qPdA =
m2

dz
→ dzm2

0. (44)

From the model formulae for the change in qP and the
particle energy-momentum p ((32) and (34)) we obtain

the following differential equations defining a curve to be
called the P-curve:

dP = dzqP +
dA
2

(
1 − q2

P

m2
0

)
,

dqP = −dzqP +
dA
2

(
1 +

q2
P

m2
0

)
. (45)

Firstly we note that from the sum and differences of (45)
we obtain

P + qP = A,

P − qP = L, (46)

where the vector L has a light-like tangent just as the
directrix A:

dL = 2dzqP − dA q2
P

m2
0
. (47)

In this way the P-curve goes in between two curves with
everywhere light-like tangents and the vector qP connects
to both of them.

The vector qP is time-like and quickly approaches the
length m0. To see this we multiply the second line of (45)
by qP and obtain

dq2
P = dz(−q2

P +m2
0). (48)

This means (remembering that dz = qPdA/m2
0) that we

may write

q2
P = m2

0(1 − T−1
P ), with TP = exp

(∫ (
qPdA
m2

0

))
.

(49)

We have assumed that qP = 0 and TP = 1 at the start of
the process. We note that the integrand in the exponent
for TP is an area, more precisely the area between the di-
rectrix and the P-curve. This is very similar to the results
we obtained in [2] for the generalized rapidity and we will
now briefly connect to these results.

5.4 The X -curve and its properties

The distribution in (1) contains two terms, the phase space
and the exponential area suppression. In order to obtain
a large probability it is necessary for a given total energy-
momentum on the one hand to make many particles, on
the other hand to make them in such a way that the area
is small. The obvious compromise is that the decay region
is around a typical hyperbola with an average squared dis-
tance to the origin 〈Γ 〉 ≡ Γ0. The length of the hyperbola
is proportional to the available rapidity range for the fi-
nal state particles, i.e. ∆y = ln(s/Γ0) with s the squared
c.m.s. energy.

In the Lund model interpretation for a string with
a single gluon excitation, there will be two parts of the
string; one spanned between the q and the g and one be-
tween the g and the q̄. Each of them should break up
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k

k

k3

2

1

Fig. 12. A string with a q(k1), q̄(k3) and a single gluon exci-
tation (k2). The figure shows the connected region around the
gluon “tip”

in a similar way as the single string region described by
(1). Besides that there will be a few particles produced in
the connected region around the gluon “tip”, cf. Fig. 12.
If the energy-momenta of the partons are kj , j = 1, 2, 3
(with indices 1 (3) for the q (q̄)), then there will be two
hyperbolic angular ranges, (∆y)12 and (∆y)23. The sum
of these ranges is

λ = (∆y)12 + (∆y)23 = ln
(

s12

2Γ0

)
+ ln

(
s23

2Γ0

)
,

= ln
(

s

Γ0

)
+ ln

(
s12s23

4Γ0s

)
. (50)

Here sj� = (kj + k�)2 and s = s12 + s23 + s13 and the
factors 2 are introduced because only half of the gluon
energy-momentum goes into each string region.

The quantity k2
⊥ ≡ s12s23/s is a convenient (and

Lorentz invariant) approximation for the transverse mo-
mentum of the emitted gluon. From (50) we conclude that
after the emission of a single gluon the phase space is
increased from the single hyperbola result above by an
amount corresponding to a “sticking-out tip” of length
given by the logarithm of the emitted transverse momen-
tum. In conventional notions this corresponds to the
“anomalous dimensions” of QCD, i.e. the emission of a
gluon increases the region of colour flow inside which more
gluons can be emitted and hadronization can take place.
The whole scenario is easily visualized and used in the
Lund dipole model [8] and the corresponding Monte Carlo
simulation program ARIADNE [9].

It is straightforward to see that if there are many glu-
ons then there is a corresponding quantity, a generalized
rapidity λ � ln(

∏
sjj+1) stemming from the hyperbo-

lae spanned between the colour-connected gluons. But we
note that this is not an infrared stable definition. We will
now provide a convenient generalization.

A closer examination of the region around the tip of a
gluon reveals that there is a correction corresponding to
a connected hyperbola in the region (k1, k3) between the
“endpoint” of the hyperbola in the region spanned be-
tween (k1, k2/2) and the one spanned between (k2/2, k3),
cf. Fig. 12. In formulae we obtain for the average hyper-
bolae(

α1k1 +
1
2
β1k2

)2

= Γ0 and
(
γ3k3 +

1
2
β3k2

)2

= Γ0,

(
α2k1 + γ2k3 +

1
2
k2

)2

= Γ0, (51)

with the ranges 1 ≥ α1 ≥ 2Γ0/s12, 2Γ0/s12 ≥ α2 ≥
0, 2Γ0/s12 ≤ β1 ≤ 1 and similarly for the other vari-
ables. The length of the two hyperbolae in the segments
(k1, k2/2) and (k2/2, k3) are then given by (50) but the
third hyperbola provides an extra contribution (in the ap-
propriate limit s13 � s) equal to ln(1+4Γ0s/s12s23). Then
the total (generalized) rapidity length becomes

λ123 = ln
(

s

Γ0
+

s12s23

(2Γ0)2

)
. (52)

This is evidently a nice interpolation between the situ-
ations with and without a gluon on the string and it is
also an infrared stable definition of the notion of rapidity
length. Equation (52) is noted in [2] and led us to introduce
a functional defined on a multi-gluon string directrix.

We may firstly define a set of connected integrals [2]:

In =
∫

ds01ds12 · · ·dsnE , (53)

with the easily understood notation (cf. (18)) sjj+1 =
(A(ξj) − A(ξj+1))2, i.e. it is proportional to the squared
mass between the points ξj and ξj+1 along the directrix.
By performing the integrals, we obtain that the argument
in the logarithm in (52) is given by the sum I1/Γ0 +
I2/(2Γ0)2 and that we may in general define the functional
T by

T = 1 +
∞∑

n=1

In

(2m2
0)n

, (54)

as a suitable generalization for any string state. For a finite
number of partons N the terms with n > N will all vanish
and we also note that the highest degree term will always
have the generic form

2
s12

4m2
0

s23

4m2
0

· · · sN−1N

4m2
0

. (55)

We also note that for a finite total energy E the contri-
butions for very large degrees will become smaller and
smaller compared to the scale m0.

In order to study the functional T it is suitable to
introduce a varying value ξ instead of the total energy
E in the connected integrals. It is then evident that the
functional T (ξ) will fulfil the integral equation

T (ξ) = 1 +
∫ ξ

0

ds(ξ, ξ′)
2m2

0
T (ξ′). (56)

We will also introduce the vector-valued function qT (ξ)
together with T so that we have

qTµ(ξ) =

∫ ξ

0 dAµ(ξ′)T (ξ′)
T (ξ)

,

T (ξ) = 1 +
∫ ξ

0

qT (ξ′)dA(ξ′)
m2

0
T (ξ′). (57)
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By differentiation and integration we obtain the results

T = exp

(∫ ξ

0

qT (ξ′)dA(ξ′)
m2

0

)
≡ exp(λ(ξ)),

q2
T (ξ) = m2

0(1 − T−2(ξ)). (58)

The generalized rapidity λ corresponds to the result in
(52) for the simple case described above and it provides
an infrared stable definition for any multi-gluon state. Fur-
ther the vector qT is time-like and will quickly approach
the finite length m0.

5.5 The correspondence between the X -curve
and the P-curve

The similarity between these results and the results ob-
tained for the P-curve in (48) and (49) are obvious (be-
sides the power in T−1) and there is a correspondence to
(45) and (46) also. The interpretation of the X -curve (as
worked out in [2], cf. also [3]) is that there is a vector val-
ued function Xµ(λ) conveniently labelled by λ such that

X + qT = A,

dX
dλ

= qT ,

dqT

dλ
= −qT +

dA
dλ

, (59)

i.e. the vector qT is the tangent to the curve defined by
X such that it reaches to the directrix. There is no direct
correspondence to the L-curve (unless the vectors q has
reached its asymptotic length m0).

It is useful to calculate the results from the differential
equations for the case when there is a finite length light-
like vector kj in the directrix. By direct integration we
find that if we have the vector qTj then “after” application
of the parton energy-momentum kj we obtain the vector
qTj+1 and will take a step along the X -curve equal to δXj

qTj+1 = γjqTj +
(1 + γj)

2
kj ,

δXj =
(
qTj +

1
2
kj

)
(1 − γj),

γj =
1

1 +
qTjkj

m2
0

. (60)

(we also note that the products of the γj is equal to T−1).
The formulae corresponding to these results for the P-
curve are

q′
P = γqP +

(
1 +

q2
P γ

m2
0

)
2

k,

δP = (1 − γ)qP +

(
1 − q2

P γ

m2
0

)
2

k,

Fig. 13. Two vertices placed symmetrically (around
the rapidity y = 0) at m0(cosh(δy/2), sinh(δy/2)) and
m0(cosh(δy/2), − sinh(δy/2)) respectively, with a distance
2m0 sinh(δy/2)

δL ≡ + = 2(1 − γ)qP − q2
P γ

m2
0
k,

γ =
1

1 +
qP k

m2
0

,

and

(TP )−1 =
∏

γj . (61)

This means that while the length of a step along the
X -curve depends upon q2

T the corresponding step length
along the P-curve is

(δP)2 ≡ M2
j =

(1 − γj)2m2
0

γj
. (62)

This has a very simple meaning for a step length Mj

along a hyperbola with the parameter m0, cf. Fig. 13. If
the vertices are placed symmetrically around the rapidity
y = 0 at the positions m0(cosh(δy/2),± sinh(δy/2)) then
the step length is evidently 2m0 sinh(δy/2) which should
be compared to Mj . Then if we square them and define
γj ≡ (1 − zj) = exp(−δy) the relationship in (62) will
ensue.

The identification of γ and (1 − z) is actually a very
general feature of the process (we will come back to this
aspect in the future). At this point we only note that if
the lengths (proper times) of the two adjacent vertices are
equal Γ = Γ ′ = m2

0 ≡ 〈Γ 〉, then from (7) we obtain

m2
0 =

(1 − z)m2

z2 , (63)

which evidently coincides with the result in (62). There-
fore, for this particular value of z, the fragmentation pro-
cess will all the time proceed along the connected hyper-
bolae. It is in this way that the P-curve can be considered
the average of the hadronic X-curve.

In order to provide a precise relationship between the
vectors qP and qT as well as the functionals TP and T
we make use of an interesting relationship for the X -curve
which is derived in [2]. If we define the (1+4)-dimensional
vector (Qµ ≡ TqTµ/m0, T ) (which has a length in the
(1+4)-dimensional Minkowski metric equal to Q2 −T 2 =
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−1) then the differential equation for qT can be rewritten
as

dT = QdA and dQ = TdA, (64)

i.e. as a group of special rotations in this space (corre-
sponding to a subgroup of SO(1,4)) which are defined by
the incremental changes along the directrix curve. The
corresponding relationship for the P-curve is, from (44)
and (45),

d(qPTP ) = dA
(
TP − 1

2

)
and dTP = qPdATP , (65)

so that the (1 + 4)-dimensional vector (2qPTP , 2TP − 1)
has both the same length and fulfils the same differen-
tial equations with respect to incremental changes along
the directrix as (Q,T ). In [2] we characterized the differ-
ent directrices by means of the eigenvalues of the trans-
fer matrix along the directrix and we found a simple and
useful method to relate them to the generalized rapidity
λ = ln(T ). We will come back to this formalism in a fu-
ture publication and show the significance of the extended
space.

In conclusion we have found a differential version of
our stochastic process which corresponds to a curve of
connected hyperbolae along the directrix function. The
area in between the curve and the directrix (scaled by the
single parameter m2

0) has the interpretation of a general-
ized rapidity measure for the multi-gluon case. It is also
related to a group of rotations with the incremental steps
along the directrix as the generators. The curve may be
interpreted as the average hadronic curve stemming from
the hadronization of the given directrix.

5.6 The reverse problem, to find the directrix
from the hadronic curve

We will end this section by solving the reverse problem to
the hadronization process, i.e. to exhibit to what extent we
can trace the directrix from a knowledge of the hadronic
curve, which we will call the X-curve in accordance with
the notation introduced in Sect. 5.1.

We will assume that the X-curve is defined by the
hadronic energy-momenta {pj}, ordered and laid out ac-
cording to rank. (Note that this cannot be done for a real
event obtained from an experiment, since in general, rank
is not an observable.) We will concentrate on the produc-
tion of the hadron pj , produced between the vertex vectors
xj−1 and xj with the directrix segment kj , and an appro-
priately distributed stochastic number zj . According to
(28), in order to construct kj it is sufficient to know pj

and the difference vector

(xj − xj−1) = εj p̂j . (66)

It is straightforward to solve for p̂j in terms of pj and xj−1

p̂j =
(xj−1pj)pj − p2

jxj−1√
(pjxj−1)2 − p2

jx
2
j−1

. (67)
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Fig. 14. The x2 distribution of the production vertices in our
method for different values of the hadron mass, together with
a plot of the Γ distribution in (69) with a = 0.5 and b = 0.7

The sign εj should be positive or negative depending upon
whether m2/zj is larger or smaller than zjx

2
j−1 (it is useful

to note that 2(pjxj−1) = (m2/zj + zjx
2
j−1)). Therefore

if we prescribe the first vertex vector x0 (this is always
chosen in our process as the original q energy-momentum
vector) then the directrix vectors as well as the vertices
are determined recursively up to a sign:

kj = pj + εj p̂j ,

xj = xj−1 + εj p̂j . (68)

It is evident that the other sign will determine the corre-
sponding +j . We note however, that neither the necessary
rank-ordering of the hadrons nor the colour-ordering of
the directrix gluons are experimental observables. There-
fore in this form the result has solely a theoretical mean-
ing. It is also necessary to take the possible transverse
fluctuations in the fragmentation process (mentioned be-
fore as stemming from tunneling) into account before any
observables can be presented.

6 Results

In the previous section, we have proposed a method of
fragmenting a multi-gluon string based upon the area law.
It can be described as an iterative stochastic process along
the directrix curve, which fulfills the area law at every
step. We have discussed a few different approaches for
passing a gluon corner, cf. Sect. 5.2, and from among these
we have picked a preferred one. In this section we present
a few basic results from this preferred solution and we
also compare it with JETSET and the other approaches
we have discussed.

We start with comparing the distribution of x2 from
our model with the distribution of the proper time of the
break-up points derived in the (1 + 1)-dimensional model
[3]. We have

H(Γ ) = NΓ a exp(−bΓ ). (69)

The result is presented in Fig. 14. As mentioned in the
discussion at the end of Sect. 5.2, sometimes certain val-
ues of z cannot be accomodated when we pass the corner
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Fig. 15. z values used in particle production in our method
(solid line) compared to the Lund fragmentation function f(z)
(dotted line). Though z value generation is according to the
distribution f(z), not every value produced is used. This plot
shows however, that the rejection of z values in the present
method is unbiased

according to choice C3. Our Monte Carlo simulation pro-
gram handles this by starting a new event from the begin-
ning whenever this occurs. One may then expect that this
might cause changes in the z distribution and also in the
Γ distribution that we obtain. This is, however, not the
case as can be seen from Figs. 14 and 15. Further these
distributions are as they should be according to the Lund
model formulae. The Γ distribution is completely inde-
pendent of the mass value used just as in the standard,
1 + 1-dimensional Lund model.

To examine further effects in connection with our
“restart strategy”, we define the following measure ∆y,
of the correlation between two adjacent particles in the
production process

∆y = ln
(

z1

z2(1 − z1)

)
. (70)

It corresponds to the difference in rapidity between the
particles in the (1 + 1)-dimensional model. This distribu-
tion would be altered if we rejected particular correlations
between successive values of z (e.g. a large value followed
by a small value etc.) more often than others.

In Fig. 16 we compare our result with the result one ob-
tains using only the Lund symmetric fragmentation func-
tion. There is no noticeable difference between the two
curves, suggesting that the restart procedure (involving
possible rejection of some z values) is effectively insensi-
tive to such correlations between adjacent values.

In Fig. 17 we show the distribution of our “local bend-
ing” parameter, k2

⊥2, defined in (43). This figure illustrates
that the modifications of the directrix that we make when
we apply our method are of the order of the hadronic mass
scale. For values of k2

⊥2 > m2 there is a fall off faster than
a gaussian.

In the left-hand side plot of Fig. 18 we summarize the
rapidity distributions obtained using the different
approaches for passing a gluon corner, C2 and C3 de-
scribed in Sect. 5.2, and compare them to a curve pro-
duced using PYTHIA in one simple situation: a perturba-
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Fig. 16. The ∆y distribution, defined in (70), from our method
(solid line) compared with the distribution obtained using only
the Lund symmetric fragmentation function (dashed line)
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Fig. 17. Plot of dP/d(k2
⊥2) versus k2

⊥2 measured in (GeV)2.
Modifications of the directrix are on the scale of hadronic mass

tive string state consisting of a quark, an antiquark and
a single gluon. We conclude that modifying the directrix
leads to the production of too many particles over a large
range of rapidity if the modifications are not “smooth”.
In the right-hand side of Fig. 18 we show a few rapidity
distributions obtained from using our preferred method
for different energies of the gluon.

In Fig. 19 we show an example of inclusive rapidity dis-
tributions obtained by JETSET/PYTHIA and our
method. For the comparison we have used an arbitrar-
ily chosen partonic event taken from ARIADNE. A close
examination will show that in general there is a small mul-
tiplicity difference in the gluon jets. We have traced this
to the fact that the two to three particles with the largest
energy-momenta in the jets are faster according to our
method compared to JETSET. It is impossible to com-
pare to experimental data because firstly in this case we
have only made use of a single partonic event. And sec-
ondly, at present we have not introduced the “fragmenta-
tion transverse momenta”. Nevertheless we conclude that
the inclusive distributions are very similar.

But we are definitely not dealing with the same parti-
cles on an event to event basis. To show this, we compare
the two procedures on an exclusive, event to event basis in
Fig. 20. For this plot we devised a procedure to use exactly
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Fig. 19. The rapidity distribution (left) and mean |phadrons
⊥ | (GeV) as a function of rapidity (right), for a string state of λ

measure 70 (which is above the average λ for the energy and pcut
⊥ used for this plot: s1/2 = 2000GeV, pcut

⊥ = 2GeV) generated
by ARIADNE, fragmented using our method (solid curve) and PYTHIA (dashed curve)

the same values of z for particle production in the two
programs. Since both our procedure and PYTHIA might
need to reject some sequences from time to time, we took
only those events where no such rejection was required by
either program.We have plotted the distribution of the ab-
solute value of the difference of the two hadronic curves,
(|∑n

j=1(pC3)j − ∑n
j=1(pPYTHIA)j |2)1/2, as a function of

rank. The curve clearly shows that the hadronic curves
obtained from the two programs are different. The abso-
lute value prevents cancellation of the differences which
would occur in an average over a large number of events,
as we find from the comparison of the inclusive distribu-
tions.

7 Concluding remarks

We have presented a precise method to implement the
Lund area law (see (1)) to fragment a multi-gluon string
state. The final state hadrons are produced in an iterative
stochastic process. The energy-momentum vectors {pj}
can be laid out in rank-order as a curve, the X-curve, with
a vertex vector at every point connecting to the directrix

curve. The directrix corresponds to the parton energy-
momentum vectors laid out in colour order. It describes on
the one hand the orbit of a (massless) q-particle connected
to a string and on the other hand the whole string surface.

It is possible to describe the whole process by analyti-
cal means, in particular in terms of a transfer matrix for-
malism similar to the one used for the (1+1)-dimensional
model in [5]. This time it is necessary to make use of a
(1 + 3)-dimensional framework. We will investigate this
problem in the future.

In this paper, we have neglected the possibility of intro-
ducing transverse fluctuations in the hadronization pro-
cess. Such fluctuations are introduced on the basis of tun-
neling arguments in the (1 + 1)-dimensional model. We
feel that they are necessary for a consistent quantum me-
chanical treatment (there is no way to localize the string
surface area better than what is allowed by Heisenberg’s
indeterminacy relations). We will examine the effects of
such transverse fluctuations on our results in the future.

The directrix curve is in general given by a perturba-
tive cascade (although in some cases precise matrix ele-
ments are also available). This means that the partonic
states we are fragmenting are resolved only down to some
cutoff, usually in virtuality or in terms of the smallest
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Fig. 20. Comparison of JETSET and our method on an event
to event basis: We plot here the average of the absolute value of
the difference (GeV) between the hadronic curves for the same
partonic event used in Fig. 19, obtained from the two programs
as a function of rank, where for every event the particles of a
certain rank were produced using exactly the same value of z
in the two alternative procedures

allowed partonic excitations. String dynamics is infrared
stable in the sense that minor modifications of the direc-
trix only have a local influence, due to the minimal na-
ture of the string world surface. We have made use of this
freedom in the fragmentation process and in this way the
partonic states will be defined down to the hadronic mass
scale. We will investigate the properties of the soft gluons
thus introduced into the partonic state, in the future.

We have shown that the fragmentation process, with
step size equal to the hadronic mass can be defined also in
the limit of a vanishing mass in terms of a differential pro-
cess. The corresponding solution, the P-curve, is stretched
in between two curves, the original directrix, A, and an-
other curve, the L-curve, also with a light-like tangent.
The correspondence to the vertex vectors for the frag-
mentation process are connectors to the P-curve reaching
out to the A- and the L-curves. The area in between the
P-curve and the directrix A corresponds to a generalized
rapidity variable in the same way as the average hyperbola
defines rapidity for the (1 + 1)-dimensional model. There
is an interesting relationship to the group of rotations in a
(1+4)-dimensional space which we will investigate further
in the future.

We have also shown that there is a duality (with prop-
erties similar to the parton–hadron duality introduced by
the St. Petersburg group [10]) between hadronic X-curve,

defined by our process, and the original directrix. We note,
however, that the hadrons produced in our process always
stem from the energy-momenta of two or more partons.
The vertex vectors xj contain the “memory” of the ear-
lier partons. It is nevertheless possible to reconstruct the
directrix from the X-curve, although the relationship con-
tains a large number of degrees of freedom (the number of
degrees of freedom increases further if we introduce trans-
verse momentum fluctuations in the fragmentation pro-
cess). We will investigate these properties in the future.

The process we have defined has also been imple-
mented into a Monte Carlo simulation program. Due to
the way it is constructed it is fairly direct to include also
the multi-particle production features of the original JET-
SET, i.e. to include probabilities for different (qq̄)-flavors,
different kinds of mesons, the decay of resonances etc. This
is necessary for a comparison with experimental data.
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